

Methodologies and Metrics for Assessing

the Strength of Relationships between

Entities within Semantic Graphs

T. L. Hickling, W. G. Hanley

September 29, 2005

Lawrence Livermore National Laboratory

UCRL-TR-216074

 ii

This document was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government nor the University of

California nor any of their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed, or represents that its use

would not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise, does

not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government or the University of California. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States

Government or the University of California, and shall not be used for advertising or

product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by

University of California, Lawrence Livermore National Laboratory under Contract W-

7405-Eng-48.

 iii

Abstract

Semantic graphs are becoming a valuable tool for organizing and discovering

information in an increasingly complex analysis environment. This paper investigates the

use of graph topology to measure the strength of relationships in a semantic graph. These

relationships are comprised of some number of distinct paths, whose length and

configuration jointly characterize the strength of association. We explore these

characteristics through the use of three distinct algorithms respectively based upon an

electrical conductance model, Newman and Girvan’s measure of betweenness [5], and

cutsets. Algorithmic performance is assessed based upon a collection of partially ordered

subgraphs which were constructed according to our subjective beliefs regarding strength

of association.

 iv

Contents
1 INTRODUCTION ... 1

2 PARTIAL ORDERING .. 3

3 CONDUCTANCE.. 5

3.1 CONDUCTANCE MODEL CONSIDERATIONS ... 6
3.2 GRAPH MODIFICATION ... 7
3.3 IMPLEMENTATION... 9

4 CUTSETS... 11

4.1 SIMULATION APPROACH... 12
4.2 HIDDEN MARKOV MODEL .. 13

5 BETWEENNESS... 14

6 INCORPORATING SOURCE DOCUMENT CONFIDENCE .. 18

7 RESULTS... 19

7.1 CONDUCTANCE RESULTS.. 19
7.2 CUTSET RESULTS.. 21
7.3 BETWEENNESS (CRITICALITY) RESULTS ... 23
7.4 SOURCE DOCUMENT CONFIDENCE RESULTS .. 24

8 APPLYING THE METRICS TO REAL WORLD SEMANTIC GRAPHS 26

9 CONCLUSION.. 27

ACKNOWLEDGEMENTS ... 27

REFERENCES ... 28

APPENDIX – HMM... 29

 1

1 Introduction
In practical informatic applications, semantic graphs are rapidly becoming more valuable

for representing massive quantities of relational data based upon a defined ontology.

Methods must be developed for extracting and interpreting information from these

massive graphs in order for them to be useful in the real world. In this paper, we address

the need to quantify, or rank, our confidence in the relationships between entities within a

semantic graph.

We begin by providing some terminology that will be used extensively in this discussion.

A graph G = (V, E) is composed of a set of vertices, or nodes, V={v1, v2,…, vn}, together

with a set of edges, or links, VVE ×⊆ . A subgraph 'G of G is defined by ()','' EVG =

where VV ⊆' and E '⊆ V '×V '()∩ E . We will generally denote an edge from vertex va to

vb as vavb, and any quantity q which applies specifically to the edge vavb will be denoted

by qab.

A path p in G from va to vb can then be defined as the set of l coincident edges given by

p = vav i1
,v i1

v i2
,...,v il −2

v il −1
,v il −1

vb{ }, (1)

or equivalently,

p = vav i1
v i2

...v il −2
v il −1

vb(), (2)

where l is considered to be the length of p. The topological strength of association

metrics between any two nodes will depend heavily upon the nature of the paths which

link them. Therefore, we will differentiate here between simple and composite paths,

which behave differently under certain circumstances. Let P denote the set of all distinct

paths },...,,{ 21 kppp from va to vb. Then pj is a simple path if ,jn pv ∈∀ jipv in ≠∉ , ,

i.e., every node in pj is unique to pj. The simple paths pi and pj may also be described as

internally disjoint. Any path which is not a simple path will be known as a composite

path. Such paths may intersect in various ways with other composite paths, and the

extent of their coincidence will be instrumental in determining the strength of association.

Semantic graphs are graphs in which nodes represent real-world entities, and edges

represent relationships between them. Semantic graphs are governed by ontologies,

which define the permissible contents of the graph. Depending upon how the semantic

graph is constructed, we may also apply a level of confidence or degree of belief to a

node or link in the graph. While this high-level description of semantic graphs will

suffice for the purposes of this paper, they are discussed in greater detail in [1].

We begin our discussion by constructing a definition of the nebulous concept of strength

as it applies in the semantic graph context. The concepts presented in this paper will be

based upon the assumption that the strength of a given relationship is affected to some

degree by all of the following features, not necessarily exhaustive:

 2

I. Subgraph topology, i.e., number and configuration of paths between two nodes of

interest.

II. The level of confidence associated with nodes and links connecting two nodes of

interest. Such confidence may be based upon the reliability of information sources,

information extraction, and/or data fusion. The development and use of an

appropriate confidence metric would require the participation of an expert who is

knowledgeable of the information extraction techniques used to build the graph, as

well as the nature and reliability of supporting document/data sources.

III. The stability of the subgraph topology between two nodes, where stability

describes in some fashion the robustness of a relationship to the removal or failure

of data.

IV. The criticality of components which link two nodes. This is a local stability metric,

applied to an individual node or link, which is based upon the degree to which a

relationship relies on the component in question.

V. Semantic interpretation of information in the semantic graph [1]. Such a metric

attempts to determine the usefulness of information based upon its semantics and

relevance to the question of interest.

VI. Underlying document/data support. Data based upon diverse information sources

may be considered stronger or more reliable.

We will not address (V) in detail, as this is discussed at length in [1], nor will we

comprehensively discuss techniques for designing a confidence metric based on

information extraction for specific nodes and links (II), since such a metric depends

heavily upon the nature of the information system and the problem domain. However,

both of these play a significant role in the interpretation of semantic graph contents, so

we will discuss appropriate ways to incorporate them into the topological strength metrics

we have developed, and we will also address an initial approach to creating data

confidence values from those of document sources.

Note also that the above measures depend upon a neighborhood within the semantic

graph containing paths which connect the two nodes of interest. Clearly, any two nodes

linked by at least one path reside in the same connected graph component. In a real-

world application, such a connected component is potentially massive, and examining

every path between two nodes may be an intractable problem. Later in this paper, we will

discuss in more detail the conditions under which these metrics should be applied. For

the purpose of clarity, however, we will assume in the meantime that our example graphs

comprise the relationships between two entities in their entirety.

We will begin by introducing partially ordered sets due to graph configuration in Section

2, followed by detailed discussions of our strength of association, global stability, and

criticality algorithms in Sections 3, 4, and 5, respectively. Section 6 introduces a method

by which we incorporate document/data source confidence into these three algorithms.

We present notable results on sample graphs in Section 7, and finally, Section 8 discusses

the appropriate conditions for applying these metrics, along with suggestions for

preprocessing graphs prior to implementation.

 3

vt

A Parallel Collapse

vs

vs vs

vs

vt

vt vt
(A)

(B)

G1 G2

A Serial Collapse

vs vs vt vt

G1
G2

2 Partial Ordering
In order to provide a basis by which to judge the performance of our various algorithms,

we define a partially ordered set, or “poset”, of graphs we wish to examine. Let us

denote the strength of association between two nodes, vs and vt (frequently referred to as

the source node and terminal node, respectively), in a graph G as the function

),(GtsΨ . We make the following initial assumptions regarding strength of association

as the foundation for a poset:

(1) () ()GtsGtsGG ,',' Ψ≤Ψ⇒⊆

(2) A parallel collapse of nodes in G causes),(GtsΨ to decrease (Figure 2-1).

(3) A serial collapse of nodes in G causes),(GtsΨ to increase (Figure 2-2).

Figure 2-1: A parallel collapse occurs when two nodes from distinct paths (shown in blue) in G1 fuse

in G2. (A) A parallel collapse may cause a single node dependency between paths, or (B) link

dependencies may form. In a multigraph setting, (B) may exhibit a single node dependency.

Figure 2-2: A serial collapse occurs when two adjacent nodes (shown in blue) in G1 fuse in G2.

Assumption (1) is clearly true given that any subgraph of G connecting vs and vt contains

less supporting information than G for the relationship and must thus represent a weaker

association (we assert that the strengths are equal only for the trivial case where GG =').

 4

Path Coincidence

14
0

14
2

14
4

14
8

14
14

Assumption (3) is similarly obvious in that it illustrates the basic assumption that a short

path is always topologically stronger than a long path (this is not necessarily true

semantically, as described in [1]). The underlying assumption which gives rise to (2) is

that two simple paths represent a stronger association than one simple path. A single

simple path can be envisioned as two paths which intersect at every point, while two

simple paths are completely independent. Therefore if two paths only partially coincide

(forming a composite path), their combined strength should lie between these two

extremes, dictated by the extent of the coincidence between them. If we quantify the

degree of coincidence as the proportion of nodes and links shared between the two, we

get the ordering shown in Figure 2-3.

Figure 2-3: Dark nodes indicate the portions of shared information between two paths. The

proportion of shared data determines the ordering for paths collapsed in parallel. Thus we can

properly order the graph from Figure 2-1(A) with its single-node dependency.

While most subgraphs of semantic graphs encountered in real world applications will be

far more complex than those shown here, we can use these three assumptions to

qualitatively evaluate the performance of our algorithms in ranking various relationships.

 5

3 Conductance
First we present a promising algorithm which is based upon the concept of an electrical

circuit [2, 3, 7]. We may imagine the graph as a series of pathways along which an

electrical current might travel, where the links of our graph represent wires, and each

node is a connection between those wires. We associate with each node an electric

potential, which acts as a sort of “electrical pressure”, pushing current through the graph

from high to low potential. Thus, current will only flow through a link if there is a

potential difference between the two nodes it connects. The magnitude of the potential

difference between va and vb is determined both by the amount of current flowing between

them, and the amount of opposing force on the link vavb. This opposing force is called

the resistance. We can formalize our definition of potential difference, denoted abV , as

the amount of energy required to move a current, abω , across a resistance abr . This

relationship is described by Ohm’s Law (3), and it holds true for any resistor or

component in an electrical network, as well as the network itself, as long as the resistors

are ideal (resistances remain constant).

baababab vvrV ,∀= ω (3)

The conductance on a resistor between va and vb, denoted abk , is defined as the inverse of

the resistance, i.e.,

ba

ab

ab vv
r

k ,
1

∀= , (4)

so that conductance on a component of the graph increases as its resistance decreases.

The graph conductance is the metric we will use to measure the strength of association

between two nodes in a semantic graph.

To see why this is appropriate, we must first consider the behavior of resistance and

conductance due to graph configuration. In an electrical circuit, resistors along a single

path or path fragment are connected in series and have an additive dampening effect on a

current; hence longer pathways will carry a higher resistance (i.e., lower conductance).

On the other hand, conductance is additive across resistors in parallel paths between two

points in the electrical network, which implies that conductance will increase across path

multiplicity. In terms of our strength of association metric, increasing numbers of

parallel paths (e.g., multiple simple paths, or disjoint portions of composite paths) will

boost strength, while increasing the length of simple paths will decrease the strength.

The behavior of conductance in the electrical network mimics in some sense the effect we

would like to see from a confidence metric, if such a metric were available, for the data

underlying the graph. Low confidence, as with low conductance, should lower the

strength of association. Let us assume, then, for the sake of argument, that we have such

a confidence metric,]1,0(∈abc , where 1=abc represents certainty, and that this metric

 6

G1 G2

vs vs vt vt

21,,1 EEvvk baab ∈∀=

⇓
() () siemensGkGk stst

4

3
21 ==

may be applied to a link or a node
1
. Standard methods of computing graph conductance

expect the conductance values to be applied only to the links of the graph. Therefore, to

explicitly incorporate nodes and their effects, we must make some modifications to our

graph to set the stage for the implementation.

3.1 Conductance Model Considerations

As we have previously discussed, the graph conductance model is a promising candidate

for a strength of association metric. However, there are three issues we must address

before we can apply the model properly.

Single-Node Dependencies

There are certain properties of the conductance model that are inconsistent with our

interpretation of the strength of association metric in a semantic graph context. One such

property is that single-node dependencies may often be ignored by the model. By single-

node dependency, we mean an intersection of two or more distinct paths at exactly one

node. In Figure 3-1, we compare such a graph to its counterpart, which is composed of

the same number of simple, i.e., internally disjoint, paths of the same length.

Figure 3-1: Single node dependencies, as shown above, are often ignored in the conductance model.

In the above graphs, all link conductances are fixed at 1.

In the context of strength of association, however, we would like to see a lower graph

conductance in the presence of single-node dependencies, as asserted in assumption (2)

regarding a parallel collapse.

1
 Note that we exclude 0 from the range of abc and assume that data with zero confidence has been pared

from the graph. This is not necessary from an electrical standpoint (zero confidence simply produces

infinite resistance, preventing the flow of current along a pathway), but may be implementationally

desirable to avoid potential divide-by-zero errors and to allow more efficient computation.

 7

vs vs vt vt

21,,1 EEvvk baab ∈∀=

⇓
() () siemensGkGk stst 1' ==

G GG ⊂'

Zero potential difference

There are some circumstances in which a link may have zero potential difference

between its nodes. Such links carry no current and will have no effect on the graph

conductance. Due to assumption (1) regarding strength of subgraphs, however, we

expect such links to strengthen the graph, even if only to a small degree. Figure 3-2

shows a simple example, where the center vertical link of G has zero potential difference.

Figure 3-2: The center vertical link in G has zero potential difference, and thus has no effect on the

graph conductance. All link conductances are fixed at 1 in each graph. Note that in real world

applications where confidences have been applied, zero potential differences may be rare.

It is also interesting to note that from an electrical standpoint, single-node dependencies

and zero potential difference produce the same result. Though they may be electrically

identical, our solution to these issues, in the context of semantic graphs, must treat them

quite differently.

Applying Confidence to Nodes

Perhaps the most important issue of the three listed here is that we would like to be able

to apply confidence, ergo conductance, to nodes as well as links. Unfortunately, standard

graph conductance computation algorithms expect nodes to act as merely connection

points between the links. We have found this problem to be nontrivial in that graph

configurations can become quite complex, giving rise to great difficulty in encapsulating

the behavior of nodes relative to the links between them in terms of conductance.

3.2 Graph Modification

We begin by conceptualizing our nodes as “objects” in the graph, to which conductances

can be applied, without yet attempting to precisely define their nature. We would like to

force any current entering a node object to cross a resistance within the node before it can

move on to another node object. Thus we assert that our node object has an entry point,

where all incoming links must enter, and an exit point “on the other side”, where all

outgoing links leave (See Figure 3-3).

 8

0i
v

1i
v

0j
v

1j
v

ki

kj

kij kij

 ik
jk

Undirected links between node objects in the graph are represented through the use of

two directed links which must go from exit to entry. Directed graphs and multigraphs

may also be represented in this fashion, through the use of an appropriate number of

directed links.

Figure 3-3: Node objects vi and vj with conductances ki and kj , respectively. Red arrows denote

entry points and blue arrows denote exit points for the node objects. Note that the undirected link

between the nodes is represented here by two directed links, where each much go from exit to entry.

For our implementation, we have chosen to represent node objects as a pair of dummy

nodes connected by a link which carries the node conductance. Figure 3-4 illustrates the

structure for two adjacent node objects, iv and jv . One dummy node acts as the entry

point for the node object, and we refer to it as the entry node for the node object. The

other node is the exit node.

Figure 3-4: A node object represented as two dummy nodes connected by a link which carries the

node conductance. Node object conductances are given in red, link conductances in blue. Note that

the link belonging to the node object is the only link permitted to flow from entry node to exit node.

As shown in Figure 3-4, links belonging to node objects are the only links in the graph

“permitted” to flow from an entry node to an exit node. In general, we only convert

internal nodes, i.e., all nodes other than the source node sv and the terminal node tv , into

node objects. The source and terminal nodes each act as their own entry and exit points.

As a consequence, a link connecting the source directly to the terminal node, for the sake

of consistency, should become two links (multigraph). The absence of this second link,

in contrast to the two links between other pairs of node objects, may tend to weaken

graphs which already rely heavily upon the direct link between these nodes, potentially

skewing graph rankings. Having made these modifications, we are prepared to compute

the graph conductance.

 9

3.3 Implementation

To compute the graph conductance, we will make use of Kirchoff’s Current Law [2],

which states that the sum of currents flowing into a node must equal the sum of currents

flowing out. Mathematically, we represent this as

Evvv jiij ij ∈∀=∑ ,,0ω . (5)

It should be noted here that 0>ijω if current flows from iv to jv , and 0<ijω if it flows

in the opposite direction. Now, by Ohm’s Law (3) and (4), we can rewrite (5) as

∑ ∈∀=
j jiiijij EvvvVk .,,0 (6)

Since jiij VVV −= is the potential difference between iv and jv , we can solve (6) for iV

to obtain an expression for the potential at any node iv .

.,, Evvv
k

Vk
V jii

j ij

j jij

i ∈∀=
∑
∑

 (7)

The linear system of equations introduced in (7) can be solved using the Gauss-Seidel

method [6], an iterative approach. The steps of the algorithm are given below.

(i) Set 1,1 −== ts VV . Initialize 0=iV for all internal nodes.

(ii) For each internal node iv , compute
∑
∑

=

j ij

j jij

i
k

Vk
V , where jv is adjacent to

iv , and previous results are used as soon as they are available.

(iii) Repeat (ii) until the change in potential is less than some tolerance.

When the above algorithm converges, we will have computed potentials for each node in

the graph. The resulting potential differences indicate the direction of current flow on

each link.

Recall that our graph modifications included directed links flowing in each direction

between two node objects. It can be easily seen that the above algorithm ignores link

direction in computing node potentials. Frequently, if not always, we will find that the

resulting current flow along at least one of these links is flowing in the opposite direction

than we intended (See Figure 3-5A). We can determine the direction of the current by

examining the potentials at the end nodes of a link (recall that current flows from high to

low potential).

 10

0i
v

1i
v

0j
v

1j
v

ri

rj

rij
rij

0i
v

1i
v

0j
v

1j
v

ri

rj

rij+ri+rj rij+ri+rj

(A) (B)

Figure 3-5: (A) Frequently, current flows in the opposite direction than intended (red links),

bypassing the node object resistance. (B) We mitigate this situation by adding the node object

resistances to such links.

If either link between two node objects flows from an entry node to an exit node (i.e., the

wrong direction), we can mitigate this situation by adding the node object resistances to

the offending link resistance. In effect, we are “forcing” the current to flow across an

equivalent resistance, since it does not follow the path we intended.

Once we have made the necessary adjustment to these link resistances, we run the Gauss-

Seidel algorithm again (without reinitializing the internal node potentials) until it

converges.

Computing a Final Result

Having computed potentials on all of the nodes using the Gauss-Seidel algorithm, we still

must compute the conductance. Ohm’s Law (3) tells us the graph conductance is given

by

st

st

st
V

k
ω

= . (8)

Since 2)1(1 =−−=stV , we need only compute the total current flowing into the graph to

determine the conductance. Due to Kirchoff’s Current Law (5), we know that the total

current flowing into the graph at sv equals the total current flowing out of sv . Thus, by

(3), (4), and (5),

∑ ∑ ∈−==
j j jsjsjsjsjst EvvVkVk),1(ω . (9)

The graph conductance, given by (8), will be our strength of association measure,

),(GtsΨ .

 11

vi

vs vt

X
X X

X

vs vt

4 Cutsets
In this section we discuss an appropriate method for determining a global stability

measure for a graph. The foundation for this metric is the assumption that a graph with

multiple redundancies will be more robust to breakage due to the random removal, or

failure, of links or nodes. Our approach is to incrementally remove graph components

(links or nodes) according to some probability of removal applied to each component at a

given time τ . We also incorporate a probability that no component fails at time τ . We

wish to determine the expected time []τE at which the association “breaks”, i.e. there is

no longer a path from sv to tv existing in the graph.

Due to the fact that some composite paths may share only a single node, the removal of

links alone is insufficient to quantify the distinction between such paths and multiple

simple paths. Therefore, we must also consider the potential removal of nodes in our

procedure. We could implement this adjustment in the algorithm by converting the nodes

to node objects as described in Section 3, but it is more straightforward to apply removal

probabilities to the nodes as well as the links.

We also must consider the fact that multiple simple paths will be penalized for shorter

length if we remove only one component at each stage of the algorithm. We correct for

this bias by removing the entire subpath which depends upon the link removed (see

Figure 4-1).

Figure 4-1: The removal of node vi necessitates the removal of the other

components in its subpath, as they are no longer involved in any path connecting vs

and vt.

We loosely define subpath as referring to the set of components which, as a result of a

given node or link removal, no longer exist on any path in the graph from sv to tv .

While minimal cutsets are widely discussed in the literature, determining the expected

cutset size in a procedure such as this is not so straightforward. That the effect of

removing a given component depends upon prior removals suggests a Markov process,

which may be approached in different ways. We have explored two possible methods for

 12

performing this computation – a Hidden Markov Model [7], which is discussed in detail

in the Appendix, and simulation.

4.1 Simulation Approach

The simulation approach is relatively straightforward. At a given time τ , each

component has a probability of removal,)|(τip , associated with it, and additionally,

there is a probability)|(τ∅p that no component is removed. At each step we randomly

choose a component (or no component at all) according to these probabilities. If a

component is chosen, it is removed along with its subpath, and the graph is examined to

determine whether a path from sv to tv remains. Each value of τ where sv and tv are

finally separated is stored, and, for n trials, the expected value of the number of steps

required is computed in the usual way

n
n

ppE i

n

i

ii
τττ ==∑

=

ˆ,ˆ)(ˆ

1

, (10)

where τn is the number of failures that occurred at time τ . The slightly more complex

aspect to this algorithm is determining the appropriate removal probabilities at a given

time τ . These removal probabilities provide a good vehicle for incorporating confidence

on the nodes and links. Assuming, as for the conductance algorithm, that confidence

]1,0(∈jc is defined and available, low-confidence components should have a higher

probability of being removed, decreasing the global stability of the graph. One way to

accomplish this is by first assigning unscaled likelihoods of removal at time τ as shown

in (11),

() { }() () icic ii ∀==∅ − ,|,min| 1τλτλ (11)

where ()τλ |∅ is the likelihood that no component is removed at time τ , and ()τλ |i

represents the likelihood that component i is removed. Note that the likelihood for

component removal is dependent on τ only insofar as whether it exists in the graph at

time τ , i.e., confidence values are held constant over time. Given the likelihoods in (11),

we compute the removal probabilities as shown in (12).

()
()

() ()
{ }ij

i

j
jp

i

,,
||

|
| ∅=

∅+
=
∑ τλτλ

τλ
τ (12)

A key property of this metric is that it will be bounded below by the maximum number of

pairwise-internally-disjoint paths in the graph (Menger’s Theorem) [4]. In terms of

strength, this would be undesirable, since path influence on strength should approach zero

as path length approaches infinity. However, in terms of path redundancy and robustness

to breakage, we consider this property appropriate. Although very long paths are easily

broken, they still provide a “safety net” of sorts for the association in question. We will

discuss these and other considerations when we discuss our results in Section 7.

 13

4.2 Hidden Markov Model

We have also investigated an implementation for the cutset algorithm using a Hidden

Markov Model (HMM) [7]. Although our favored algorithm is the simulation approach

due to its simplicity, the HMM provides an interesting, if complex, alternative. In an

HMM, we have a finite set of states, which are related to each other by transition

probabilities, i.e., the probability that one state will transition to another through a

sequence of events. Each state is associated with some observable feature or value, and

these observable features are the only part of the event sequence visible to an external

observer. This technique produces a precise result, in contrast to the simulation approach

described in Section 4.1, and it is discussed in detail in the Appendix.

 14

5 Betweenness
Newman and Girvan [5] proposed a metric called betweenness, which measures the

intensity of “traffic” along a link in a graph. It is computed using the number of shortest

paths in the graph which traverse a given link. Thus, a link with high betweenness plays

a large part in holding a relationship together. We call this metric criticality. It is based

on betweenness, and it measures the relative vulnerability of a link or node in the graph.

Betweenness is generally computed for the links in a graph
2
, so in order to apply the

metric to both nodes and links, we transform the graph as described in Figure 3-4. In this

case, we require the links to be directed.

Implementation

The algorithm begins by selecting either the source node, sv , or terminal node, tv , as a

root and computing betweenness for all links relative to that root node. Each node in the

graph is initially assigned a node weight and node distance from the root node by

implementing the algorithm below as presented by Newman and Girvan [5]:

1. The root node, rv , is given a distance of 0=rd and a weight of .1=rw

2. Each node iv adjacent to rv is given distance 11 =+= ri dd , and weight

1== ri ww . Denote this set of nodes by I. Let J = ∅

3. For each node jv adjacent to one the above nodes in I, we do one of three

things:

a. If jv has not been assigned a distance, then it is assigned distance

1+= ij dd and weight ij ww = . Set J = J ∪ j{ }.

b. If jv has already been assigned a distance and 1+= ij dd , then the

weight of jv is increased by 1, i.e. ijj www +← . Set J = J ∪ j{ }.

c. If jv has already been assigned a distance and 1+< ij dd , do nothing.

4. Repeat from step 3, where I =J, until no nodes remain that have been assigned

distances, but whose neighbors do not have assigned distances.

The node weight, iw , assigned in the algorithm above provides the number of distinct

shortest paths from rv to the node iv , while the node distance, id , is the length of those

shortest paths. We found it useful in our implementation to construct a shortest path tree

during the assignment of node weights which contains only those links belonging to at

least one shortest path. Only these links will be assigned weights
3
. We can use the node

2
 Some versions of betweenness compute the betweenness of nodes in a similar fashion, but the algorithm

is not usually applied simultaneously to both nodes and links.
3
 Note that links in the original graph which do not appear in the shortest path tree from the node weight

algorithm will have a betweenness value of 0 (Figure 5-1).

 15

1

1 6
25 3

7
1

3
1

0

3
2

6
56

11

6
5 3

1

1

1 2

weights and distances computed above, along with the shortest path tree, to compute the

link weight (betweenness) for each link as presented in Newman and Girvan [5]:

1. Find every “leaf” node nv , i.e., a node such that no shortest paths from rv to other

nodes pass through nv . In a shortest path tree from rv , all leaf nodes will qualify.

2. For each node iv neighboring nv , i.e. moving up in the shortest path tree, assign a

score to the edge from iv to nv of
n

i
w

w
.

3. Now, starting with the edges that are farthest from the root node, rv , continue the

above process, working upward toward rv . To the edge jivv (with jv further

from rv than iv), assign a score that is 1 plus the sum of the scores on the

neighboring edges immediately below it in the shortest path tree (i.e., those

flowing away from rv), all multiplied by
j

i
w

w
.

4. Repeat step 3 until the node rv is reached.

Figure 5-1 shows the results for a simple graph containing a link with zero betweenness.

Figure 5-1: An example of betweenness from source node (in red), from Newman and Girvan.

Values within the nodes are node weights.

Newman and Girvan use their measure of betweenness to drive a graph decomposition

algorithm, so they compute betweenness using each node as a root node, and the resulting

betweenness values on each link are summed to obtain a final value. For our purposes,

we are interested in characterizing the relationship between sv and tv . To that end, we

implement the betweenness algorithm twice, first using sv as the root node, and then

using tv . We add the resulting values to obtain a final measure of betweenness on the

links.

Now, recall that in the transformed graph, each pair of connected node objects is linked

by two directed links. The betweenness values which result on these directed links

should be summed to obtain the true betweenness value for the original link (see Figure

5-2).

 16

sv tv
2

2
2

6

4 4

tv

sv

3 2

2 1

1 0

5

2 2

1 1

0
sv

tv

0i
v

1i
v

0j
v

1j
v

bi

bj

bij bji

bj

bi iv

jv

bij+bji

Figure 5-2: Betweenness values on the directed links between two node objects should be summed to

obtain the true value.

As written, the above implementation produces values of betweenness that have meaning

only within their graph, i.e., useful comparisons cannot be made between betweenness

values arising from different graphs. However, we can mitigate this problem. To

motivate this, let us consider a physical interpretation of the betweenness metric. We

may imagine a graph as a network of spheres suspended by wires which connect them.

Each of these wires is of equal length, and the spheres are of equal weight, say 1. If we

suspend the network of wires from the sphere representing sv , we represent the tension

on each wire by the amount of weight it supports due to the spheres hanging below it. If

multiple wires support the same set of spheres, we consider the weight equally distributed

among the wires. An illustration of this concept is provided in Figure 5-3 for a simple,

unmodified graph.

Figure 5-3: Betweenness values represent the total weight (tension) on each link when the network is

suspended from its end nodes.

The resulting betweenness values represent the total amount of node weight stressing the

links from both directions. Therefore, we can scale the betweenness values by the

number of nodes in the network, so that each value represents the proportion of the total

network weight supported by the link. This will allow us to compare the vulnerability of

links from different graphs.

 17

In a real world application of betweenness as a measure of criticality, there may be

circumstances under which the component with maximum betweenness has extremely

high confidence, i.e., there is little to no risk that the component will fail. Under such

circumstances, then, the metric provides little help in highlighting weaknesses in the

relationship. So we would like to incorporate, in some fashion, the confidence on the

data in the graph. In order to draw attention to true weak points in the graph, we need to

inflate the criticality measure for data with low confidence. Therefore we update the

criticality metric, abκ on link bavv , to account for confidence as indicated in (14),

()
(]1,0,,

22
∈∀

−
= abba

ab

ab

ab cvv
Nc

b
κ (14)

where N is the number of nodes in the original, unmodified, graph, including sv and tv .
4

4
 Recall that we modified the graph to use node objects, within which there are two dummy nodes. Thus

the modified graph upon which the betweenness values are based has 2N-2 nodes.

 18

6 Incorporating Source Document Confidence
All of the metrics presented in this paper can in some fashion incorporate data confidence

to account for potentially false or unreliable information. While we cannot specifically

address the impact of information extraction reliability and data fusion confidence (these

depend upon the information system in use), we can provide an initial attempt at applying

source document confidence to the previously defined metrics for the assessment of

strength of association, global stability of a graph, and criticality of a node or link.

Suppose we have a graph, G, such that each link bavv has associated with it a set of abn

source documents { }abnibaid ,...,1),,|(= **
. Then the set of source documents associated

with a node av in the graph will be given by

{ } { } Evvvbaidajd bab

n

i

n

j
aba ∈∋∀= == ,),|()|(11 U . (15)

For the purposes of this discussion, we assume that these source documents are

independent with regard to confidence.
5
 Let us denote the confidence on a source

document),|(bakd by (]1,0*

,| ∈bakc . We interpret confidence in general as the

probability that the information in question is true, i.e.

)(

)),|((*

,|

truevvPc

truebakdPc

baab

bak

=

=
. (16)

If at least one source document underlying a link in the graph is true, then the information

encapsulated by the link is also true. Thus,

bakfalsebakdPtruebakdoneleastatPcab ,),),|((1)),|((∀∀−== (17)

and hence, under the assumption of independence,

)1(1 *

,|1 bai

n

iab cc ab −∏−= = . (18)

We may compute abc for all links in the graph, along with ac for all nodes, so that these

confidence values may be incorporated into the strength and reliability metrics presented

here.

**

 We only consider the source documents supporting the links, which represent relationships between

entities; i.e., we assume that the presence of an entity in a document is insignificant unless a relationship is

formed, or “discovered” in the document.
5
 The appropriateness of this assumption should be revisited in future efforts.

 19

Modified

0.625

0.63529

0.63898

Standard

0.5

0.5

0.5

7 Results

7.1 Conductance Results

Performance evaluation for the conductance algorithm is based primarily upon adherence

to the early assumptions we made regarding partial orders for strength of association. We

tested more than forty small graphs with well-defined features, such as path length,

multiple paths, single-node dependencies, symmetry-induced zero potential difference,

etc., for comparison. In all cases, our assumptions were upheld. Standard conductance

algorithms on unmodified graphs produced rank groups from these test cases, where as

many as eight graphs exhibited the same conductance. Our modified conductance

algorithm ranked all test cases consistently with standard conductance rank groups, and

managed to produce rankings within these rank groups which were defensible using our

basic ordering assumptions.

We examined the performance particularly closely for graphs with single-node

dependencies and links with zero potential difference. Recall that a standard conductance

algorithm on an unmodified graph does not differentiate between these two conditions,

which is undesirable for our strength of association metric. The modified algorithm

presented in this paper produces the results shown in Figure 7-1.

Figure 7-1: Standard conductance measure on the displayed graphs is identical. Our modification

allows the conductance to vary a small amount in these special circumstances. The single-node

dependency is weaker; the link with zero potential difference makes the graph slightly stronger.

We have found another interesting property of this algorithm, which intuitively makes

sense in regard to strength of association. The strength of a graph is, in some sense, the

sum of its parts, i.e., the strength is the aggregate of the individual strengths for each

independent (simple) path or set of composite paths (Figure 7-2). This is consistent with

our intuitive belief that the existence of one path should in no way affect the strength of

another path, so long as they do not intersect at any point in the graph.

 20

Standard Modified

1.4286

2

3.4286

1

1

2

Modified

0.47134

0.50977

0.4778

Standard

0.36842

0.39583

0.37255

Figure 7-2: The strength of the third graph is the sum of the strengths on the simple paths

comprising it. This holds true for both the standard and modified conductance algorithms. It should

not be surprising that each path of length two in the first graph has modified conductance of 0.7143.

We also noticed that the effect of a direct link between sv and tv is boosted in the

modified conductance algorithm, due to the fact that these nodes are not transformed in

the graph modification. The trivial graph consisting of this link alone has its conductance

doubled in the modified algorithm due to our assertion in Section 3-2 that consistency in

the graph modification is a necessary requirement. While this behavior was not explicitly

sought in the design of the modified conductance algorithm, it is not necessarily

undesirable, considering that a direct link between sv and tv is the strongest possible link

or simple path in any graph. Thus, graphs containing this direct link will frequently be

considered stronger than other graphs in which it is lacking.

Figure 7-3 presents a graph to which a link has been added, but in this case we have more

than one possible configuration for the new link. As should be expected, the orientation

of this link does make a difference in the strength metric.

Figure 7-3: The second and third graphs are stronger than the first due to the addition of a

link. The orientation of this link is significant - in the second graph, the link creates a new

path of length 4, a more significant improvement than in the third graph.

 21

2

0.7143

0.44

0.3177 0.6353

0.88

1.4286

The new link in the second graph creates a new path of length 4, which happens to be the

shortest path in the graph. In the third graph, the link creates another path of length 5 –

clearly a less valuable improvement.

Figure 7-4: Fundamental graphs behave well - shorter paths have higher strength, as do multiple

paths. It should be noted that halving the length of a path has a greater impact on the strength than

doubling the number of paths, in the modified algorithm.

Overall, the results from our modified conductance algorithm perform well relative to our

identified criteria. The algorithm adequately differentiates between graphs with single-

node dependencies and those with links having zero potential difference. As shown in

Figure 7-4, the most fundamental of properties for the strength metric are also upheld,

such that shorter paths and greater numbers of paths have higher strength measures.

7.2 Cutset Results

The cutset algorithm is designed to serve as a global measure of stability for a given

graph. Stability refers to the vulnerability of the graph to breakage, potentially due to the

random failure of information in an environment in which confidences may be unknown.

In an environment where confidences are “known”, there may remain a high degree of

uncertainty in the confidence assessment. Under such circumstances, we may choose to

rely upon graph redundancy as a sort of “safety net”. In this sense, the cutset algorithm

result provides an estimate of the risk involved in believing a particular association is

true.

Unlike the strength of association algorithm described by way of conductance, the cutset

algorithm clearly favors single-node dependencies (See Figure 7-5). Although the

dependent node is a vulnerable component, the other components in the graph are less

dependent upon the validity of neighboring data. For example, the topmost graph is

considered more vulnerable than the graph below it. This follows since the node

dependency is close to one of the endpoints, and hence, there are longer subpaths which

are more susceptible to failure.

 22

2.63

2.712

2.96

1.344

1.232

1.142

1.142

1.99

3.68

Figure 7-5: The cutset algorithm favors single node dependencies. Note that the first graph is

considered most vulnerable due to the number of components which are dependently linked, i.e., the

longer subpaths in the graph are more vulnerable.

As should be expected, longer paths and subpaths are more likely to be broken by random

failure (Figure 7-6). However, as mentioned in the discussion of the algorithm, the cutset

value is bounded below by the maximum number of pairwise-internally-disjoint paths in

the graph. Theoretically then, the addition of an independent path of infinite length,

though certain to fail, will add 1 to the cutset value. Hence, we conjecture that this

algorithm is most useful for comparing the configurations of graphs of similar size

(Figure 7-7). When this recommendation is followed, the cutset value will depend upon

topological configuration alone rather than confounding it with influences due to size.

Figure 7-6: Longer paths are more susceptible to failure. Menger's Theorem implies that cutset

value approaches one as a single simple path length increases without bound.

Figure 7-7: This metric can compare configuration vulnerability between graphs of similar size

(here, five nodes) in the absence of multigraphs.

 23

2.072

2.604

2.58

We must make note of the fact, however, that results from this algorithm should be

examined with care. When implementing the algorithm through simulation, there will be

some variability in the result we obtain. Therefore in comparing two or more cutset

values, it is wise to simultaneously consider the configuration differences between the

graphs in question. For example, in Figure 7-8, the topmost graph is clearly less stable

than the two below it, due to the absence of the center link. So the difference in cutset

values is quite likely to be significant and representative of a true disparity between the

graphs. However, the second and third graphs are similar enough in configuration that

the difference in their cutset values may be simply an artifact of the simulation approach

to computing the measure. In such cases, if a more precise comparison is required, the

HMM or some other comparable approach may prove to be a more appropriate

computational method.

Figure 7-8: Due to configuration similarity in the second and third graphs, the difference between

their cutset values may be strictly due to variability from the simulation approach.

7.3 Betweenness (Criticality) Results

We have previously described criticality as a component vulnerability measure. In

practice, this metric can provide an analyst with a target for further investigation, or

perhaps indicate the most reliable relationship between two nodes of interest. We can see

an example of this in Figure 7-9, where we have imposed confidence values on the nodes

and links and indicated the resulting criticality values.

The highest criticality values (shown in red) indicate the most prominent obstacles in

making this a reliable relationship. Interpretation of the criticality metric is really

dependent upon the needs of an analyst. The critical value may indicate pieces of

information which should be initially targeted for further research or investigation, in

order to gain greater confidence in the association as a whole. There may also be

circumstances where only certain pathways contain solely low-criticality components, so

that only these paths should be used as a basis for determining the validity of a

relationship.

 24

Confidence

.5 .5

.5 .5

1

.3

.65

1

.9 .25

1

1 .2

.4 .5
1

.8

.75
1 .1

.6 1

.5 1 .7

1

1.67

.77

1.25

1

.56 2.5
.5

.5 .5

.5

.5 .5
.67

5

.83

1

.5

1

2
.63

.71

Scaled Betweenness

Criticality

+ ⇒

Figure 7-9: Criticality values for a sample graph. Highest critical values shown in red.

7.4 Source Document Confidence Results

We applied source document confidences to the graph shown in Figure 7-10, where the

document confidences are given by 5.0,4.0,1.0,45.0,3.0 *

5

*

4

*

3

*

2

*

1 ===== ccccc ,

respectively, for the document set { }54321 ,,,, ddddd . We have assigned these

hypothetical source documents to links so that graph (A) is supported by only one

document, 5d , and the links in graph (B) are supported by the remaining four documents.

The strength results for (A) and (B) are 3125.0=Ak and 3312.0=Bk . It is interesting to

note that graph (A), though supported by a document with higher confidence, ultimately

has a lower strength. Based upon this metric, additional document support cannot make a

relationship less likely to be true, no matter how low the document confidence might be.

Thus, each new source document which corroborates a relationship improves the

probability that the relationship is true. We make no assertion that this metric is ideal;

indeed, we hypothesize that documents are likely not independent with regard to

confidence, which must be taken into consideration. It is, however, an encouraging start

to developing an effective confidence metric based upon information source reliability,

 25

(A) (B)

5d
5d

5d
5d

5d

5d

5d

5d

41,dd

42 ,dd31,dd

43,dd

32 ,dd

2d

2d

4d

3312.0,3125.0 == BA kk

which may ultimately incorporate a higher-order model to handle document

dependencies.

Figure 7-10: The conductance results for a graph incorporating source document confidence. (A) is

supported by a single document. (B) is supported by multiple documents with lower confidence.

 26

8 Applying the Metrics to Real World Semantic Graphs
Many information systems which use semantic graphs to organize and interpret data may

potentially employ graphs of massive size, some of which may exceed 10
9
 nodes.

Algorithms run on graphs of this size can easily become impractical, if not impossible, to

use in a realistic time-frame, particularly for applications which require near real-time

decision-making. Even for graphs of a more manageable size, metrics such as the

conductance-based strength, which can theoretically achieve arbitrarily large values, may

become less useful if neighborhoods of interest grow too large. Such neighborhoods may

tend to obscure the true strength of the relationship between two nodes of interest.

For these reasons, we recommend that the metrics presented here be run on peeled

communities. The community decomposition algorithm described by Newman and

Girvan [5] attempts to partition the graph into clusters of closely-related nodes. Its

stopping criterion, called modularity, is designed to seek the “best” partition so as to

minimize the breakage of tight clusters. This implies that not only will communities be

smaller and more manageable than the semantic graph as a whole, but each community

should contain the core of the relationship between any two of its member nodes. In

addition, the community decomposition algorithm is hierarchical, which allows the

decomposition to be “rewound” in some sense to obtain larger neighborhoods, if

necessary, while remaining faithful to the modularity criterion.

We also suggest that peeling the community once a pair of nodes has been selected for

analysis is advantageous. Since tendrils (not including the two nodes of interest) do not

lie on any path between these nodes, they do not contribute to the strength of the

relationship, and they decrease the efficiency of the analyses.

There are preprocessing options which may also be considered in an analysis

environment using these tools. For example, one might wish to filter the graph of

semantically undesirable information [1] prior to performing the analysis, ensuring that

the data upon which the relationship is based is significant, or useful. The removal of

data with zero confidence is also advisable, given that such data cannot assist (and in fact,

may complicate) implementation, the interpretation of results and the decision-making

process.

There may also be ways of improving the algorithms in terms of efficiency through

preprocessing or other means. For example, the conductance algorithm may be improved

by computing conductances on serial connections beforehand. In the case of the cutset

algorithm, the HMM implementation discussed in the Appendix may be improved by

determining the minimum and maximum possible steps to break the graph.

 27

9 Conclusion
Our exploration of strength of association metrics has merely scratched the surface of an

extensive range of possible methods to exploit the information stored in a semantic graph.

As for our metrics in particular, there may be many ways to build on them in order to

provide the greatest possible benefit to programs in need of inference techniques for

semantic graphs. As the use of semantic graphs becomes more widespread, the need for

metrics such as these will become paramount. Perhaps those presented here will provide

a foundation for the development of increasingly more efficient and valuable algorithms

for knowledge discovery based upon semantic graphs.

Finally, we must note that these metrics and results are the product of a partially funded

effort, and as a consequence may be inconsistent in some ways with the initial proposal

and statement of work.

Acknowledgements
We would like to thank Dr. John Nitao, Ph.D. for his helpful suggestions and insight.

 28

References

[1] Barthélemy, Marc, Edmond Chow, and Tina Eliassi-Rad. Knowledge Representation

Issues in Semantic Graphs for Relationship Detection. Technical Report,

Lawrence Livermore National Laboratory.

[2] Bollobás, Béla. Modern Graph Theory. New York: Springer-Verlag New York,

Inc., 1998.

[3] Lessons in Electric Circuits. Tony R. Kuphaldt. 2000-2005. ibiblio. Sept. 2005.

<http://www.ibiblio.org/obp/electricCircuits/>

[4] Menger’s Theorems and Max-Flow-Min-Cut. S.C.Locke. July, 1996. Sept. 2005.

 <http://www.math.fau.edu/locke/Menger.htm>

[5] Newman, M.E.J. and M. Girvan. Finding and evaluating Community Structure in

Networks. Phys. Rev. E 69, 026113 (2004).

[6] Nitao, John J. Personal Correspondence. 01 Sept. 2005.

[7] Wikipedia, The Free Encyclopedia. Sept. 2005. <http://en.wikipedia.org/>

 29

sv
tv

tv

tvtv

sv

sv sv

(A)

(B) (C)

Appendix – HMM
We investigated an implementation for the cutset algorithm using a Hidden Markov

Model (HMM). Though our favored algorithm is the simulation approach due to its

simplicity, the HMM provides an interesting, if complex, alternative. In an HMM, we

have a finite set of states, which are related to each other by transition probabilities, i.e.,

the probability that one state will transition to another through a sequence of events.

Each state is associated with some observable feature or value, and these observable

features are the only part of the event sequence visible to an external observer.

Our graph is composed of some combination of distinct paths, some or all of which may

overlap to some degree, between two nodes. It can be easily shown that the removal of a

node or link will remove at least one of these distinct paths. Thus, the maximum number

of steps that can be taken to break the association is no greater than the number of

distinct paths. For our implementation of the HMM, we allow each unique combination

of distinct paths to be a hidden state (Figure A).

Figure A: The original graph contains nine distinct paths. (A), (B), and (C) are hidden states with

three, five, and seven distinct paths removed, respectively, from the larger graph. Similarly, we

would provide hidden states for other possible configurations, along with the trivial states (all paths

and no paths).

There will be a maximum of () k

i
kk

i
H 2

0
=∑=

=
 hidden states, where k is the number of

distinct paths, and each state has an observable value of 0 or 1 indicating failure (failing

to break the association between sv and tv) or success, respectively. We must explicitly

determine the transition probabilities between each pair of states, as well as the

probability of the observable value for each state. The observable value is easy to

determine – exactly one hidden state, the one with all distinct paths removed, will have a

status of 1. Since there are only two observable states, our observation probability matrix

will be
2×H

θ where ijθ is the probability that hidden state iH exhibits the observed state

 30

j, j = 0 or 1. Transition probabilities are more complex to compute. Suppose 1H and

2H are hidden states, where kh represents the set of distinct paths remaining in the state

kH , and the transition probability between states is given by T. Then

() ()

() () HiHpHHT

hxhh

hxhhh
x

otherwiseHxp

hhif

HHT

iii

ii

ii

x

,...,1,|,

,
|

0

,

121

1211

1

12

21

=∅=

∉⇒∈

∈⇒−∈
∋∀

 ⊄

= ∑ , (19)

where x represents components present in 1H ,)|(1Hxp is the removal probability of x

as defined in Section 4.1, and ih1 is the i
th

 path in 1h . In essence, we sum the removal

probabilities of all components in 1H which could have given rise to 2H when removed,

i.e., all components not in 2H which belong to every path removed from 1H .

Suppose we have specified the transition probability matrix, T, along with a probability

matrix, θ . We set the initial state probability π = π j{ }, j = 1, …, H , where, for our

purposes, iπ = 1 if the i
th

 state is the original graph, and 0 otherwise. We use this HMM,

given by ()πθλ ,,T= , to determine the probability of observing the status sequence

O = o1,o2,...,oQ−1,oQ{ }= 0,0,...,0,1{ }, where Q is the number of states required to achieve

“success”. We do that by using the recursive algorithm given below:

• Let Hjj joj ,...,1,)(
11 == θπα

• Recursively, () ()∑
=

+ −===
+

H

i

ijqjoq QqHjTij
q

1

1 1,...,1,,...,1,
1

αθα

• Then () ()∑
=

=
H

i

Q iOP
1

αλ

In the above algorithm, () ()τατ timeHstatePj j |= , and since this probability depends

only upon the previous state, we can define ()jτα recursively. The complexity of this

algorithm is QH
2

, which is linear with respect to the length of the observation

sequence, and we run the HMM for Q = 2, …, k, where k is the number of distinct paths

in the original graph
6
. We can then use (10) to compute the expected value for Q.

6
 In reality, k need only be as large as the number of distinct path memberships of the components in the

graph. For example, in Figure 10, k < 6 is appropriate, since any five component removals will break the

association. Computing the upper (and lower) bound for k may significantly decrease runtime for many

graphs.

